首先引入一些后面会用到的定理:

定义1:定义函数$f: \Bbb R^{m \times n} \mapsto \Bbb R$,$A \in \Bbb R^{m \times n}$,定义 $$ \nabla_Af(A)= \begin{bmatrix} \frac{\partial f}{\partial A_{11}} & \cdots & \frac{\partial f}{\partial A_{1n}}\\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial A_{m1}} & \cdots & \frac{\partial f}{\partial A_{mn}} \end{bmatrix} $$ 定义2:矩阵的迹(Trace):如果$A \in R^{n\times n}$方阵,那么$A$的迹,是$A$对角线元素之和 $$ tr A = \sum_{i=1}^nA_{ii} $$ 定理1:$tr AB = tr BA$

定理2:$tr ABC = tr CAB = tr BCA$

定理3:$f(A)=tr AB \Rightarrow \nabla_Af(A)=B^T$

定理4:$trA = tr A^T$

定理5:$a \in R \Rightarrow tr a=a$

定理6:$\nabla_AtrABA^TC=CAB+C^TAB^T$

线性回归

一些符号的改写

上一篇博客提到,梯度下降的每一步,对某个参数$\theta_i$,执行: $$ \displaystyle \theta_i:=\theta_i - \alpha\frac{\partial}{\partial \theta_i}J(\theta) $$ 那么,$h_\theta(x)$的所有参数$\theta$可以表示成一列向量: $$ \theta = \left[ \begin{array}{c} \theta_0\\ \theta_1\\ \vdots\\ \theta_n \end{array} \right] \in R^{n+1} $$

我们可以定义: $$ \nabla_\theta J = \left[ \begin{array}{c} \frac{\partial}{\partial \theta_0}J\\ \frac{\partial}{\partial \theta_1}J\\ \vdots\\ \frac{\partial}{\partial \theta_n}J \end{array} \right] \in R^{n+1} $$

梯度下降过程可以表示成: $$ \theta:=\theta - \alpha\nabla_\theta J $$ 其中,$\theta$和$\nabla_\theta J$都说是n+1维向量。

对于训练集中所有的输入${x^{(1)}},x^{(2)},…,x^{(m)}$,其中 $$ x^{(i)} = \left[ \begin{array}{c} 1\\ x_1^{(i)}\\ \vdots\\ x_n^{(i)}\\ \end{array} \right] \in R^{n+1} $$

$h(x)=h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_2+...+\theta_nx_n$,可以表示成向量: $$ \left[ \begin{array}{c} h_\theta(x^{(1)})\\ h_\theta(x^{(2)})\\ \vdots\\ h_\theta(x^{(m)})\\ \end{array} \right] = \left[ \begin{array}{c} (x^{(1)})^T\theta\\ (x^{(2)})^T\theta\\ \vdots\\ (x^{(m)})^T\theta\\ \end{array} \right] = \left[ \begin{array}{c} (x^{(1)})^T\\ (x^{(2)})^T\\ \vdots\\ (x^{(m)})^T \end{array} \right] \cdot \theta = X \cdot \theta $$

而 $$ Y = \left[ \begin{array}{c} y^{(1)}\\ y^{(2)}\\ \vdots\\ y^{(m)} \end{array} \right] $$ 于是, $$ J(\theta) = \frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)} - y^{(i)})^2)=\frac{1}{2}(X \cdot \theta - Y)^T(X \cdot \theta - Y) $$

推导过程

关于梯度下降法,可以直接简化为求梯度为0的位置,即求$\nabla_\theta J(\theta) = \vec{0}$

首先,简化: $$ \begin{align} \nabla_\theta J(\theta) & = \nabla_\theta\frac{1}{2}(X \cdot \theta - Y)^T(X \cdot \theta - Y)\\ & =\frac{1}{2}\nabla_\theta tr(\theta^TX^TX\theta - \theta^TX^TY - Y^TX\theta + Y^TY)\\ & =\frac{1}{2}[\nabla_\theta tr(\theta\theta^TX^TX) - \nabla_\theta tr(Y^TX\theta) - \nabla tr(Y^TX\theta)] \end{align} $$ 其中,第一项: $$ \begin{align} \nabla_\theta tr(\theta\theta^TX^TX) & = \nabla_\theta tr(\theta I \theta^TX^TX) &\text{定理6, set: $\theta =^{set} A, I = B, X^TX=C$}\\ & = X^TX\theta I + X^TX\theta I & \text{$CAB+C^TAB^T$}\\ & = X^TX\theta + X^TX\theta \end{align} $$ 第二项和第三项: $$ \nabla_\theta tr(Y^TX\theta) = X^TY\\ (定理3,set:Y^TX = B, \theta = A) $$ 所以: $$ \nabla_\theta J(\theta) = X^TX\theta - X^TY = 0\\ \Rightarrow X^TX\theta = X^TY\\ $$ 最后解得: $$ \theta = (X^TX)^{(-1)}X^TY $$ 当然,以上的解是有限制的,只有当$X^TX$满秩时,才能够求逆。

如果非满秩,说明方程数量不够,也就是当需要n个参数时,却不够n个输入样本。


Copyright 2017-2019, All Rights Reserved.
粤ICP备18085907号 深圳市磐创网络科技有限公司

Documentation built with MkDocs.